Экспертные Решения

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Экспертные Решения». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

копию документа, который подтверждает оплату взноса. doc 23,5 Kb cкачиваний 274. Образцы заявления на возврат страховки по кредиту.

Экспертные методы принятия решений

Как будет изменяться экономическая обстановка с течением времени? Что будет с окружающей природной средой через десять лет? Как изменится экологическая обстановка? Будет ли обеспечена экологическая безопасность промышленных производств или же вокруг станет простираться рукотворная пустыня? Достаточно вдуматься в эти постановки естественных вопросов, проанализировать, как десять или тем более двадцать лет назад мы представляли себе сегодняшний день, чтобы понять, что стопроцентно надежных прогнозов просто не может быть. Вместо утверждений с конкретными числами можно ожидать лишь качественных оценок. Тем не менее, менеджеры, экономисты, инженеры, должны принимать решения. Например, об экологических и иных проектах и инвестициях, последствия которых скажутся через десять, двадцать и т.д. лет. Как быть? Остается обратиться к методам экспертных оценок. Что это за методы?

Бесспорно совершенно, что для принятия обоснованных решений необходимо опираться на опыт , знания и интуицию специалистов. После второй мировой войны в рамках научного движения, включающего кибернетику, информатику, теорию управления, менеджмент и исследование операций, стала развиваться самостоятельная дисциплина — теория и практика экспертных оценок.

Методы экспертных оценок — это методы организации работы со специалистами-экспертами и обработки мнений экспертов. Эти мнения обычно выражены частично в количественной, частично в качественной форме. Экспертные исследования проводят с целью подготовки информации для принятия решений ЛПР (напомним, ЛПР — лицо, принимающее решение). Для проведения работы по методу экспертных оценок создают Рабочую группу (сокращенно РГ), которая и организует по поручению ЛПР деятельность экспертов, объединенных (формально или по существу) в экспертную комиссию (ЭК).

Простейший пример экспертных оценок — оценка номеров в КВН. Каждый из членов жюри поднимают фанерку со своей оценкой, а технический работник вычисляет среднюю арифметическую оценку, которая и объявляется как коллективное мнение жюри (ниже увидим, что такой подход некорректен с точки зрения теории измерений).

В фигурном катании процедура усложняется — перед усреднением отбрасываются самая большая и самая маленькая оценки. Это делается для того, чтобы не было соблазна завысить оценку одной спортсменке (например, соотечественнице) или занизить другой. Такие резко выделяющиеся из общего ряда оценки будут сразу отброшены.

Экспертные оценки часто используются при выборе, например:

  • одного варианта технического устройства для запуска в серию из нескольких образцов,
  • группы космонавтов из многих претендентов,
  • набора проектов научно-исследовательских работ для финансирования из массы заявок,
  • получателей экологических кредитов из многих желающих,
  • при выборе инвестиционных проектов для реализации среди представленных, и т.д.

Существует масса методов получения экспертных оценок. В одних с каждым экспертом работают отдельно, он даже не знает, кто еще является экспертом, а потому высказывает свое мнение независимо от авторитетов. В других экспертов собирают вместе для подготовки материалов для ЛПР , при этом эксперты обсуждают проблему друг с другом, учатся друг у друга, и неверные мнения отбрасываются. В одних методах число экспертов фиксировано и таково, чтобы статистические методы проверки согласованности мнений и затем их усреднения позволяли принимать обоснованные решения. В других — число экспертов растет в процессе проведения экспертизы, например, при использовании метода «снежного кома» (о нем — дальше).

Не меньше существует и методов обработки ответов экспертов, в том числе весьма насыщенных математикой и компьютеризированных. Многие из них основаны на достижениях статистики объектов нечисловой природы и других современных методах прикладной статистики.

Метод Дельфи. Один из наиболее известных методов экспертных оценок — это метод Дельфи. Название дано по ассоциации с древним обычаем для получения поддержки при принятии решений обращаться в Дельфийский храм. Он был расположен у выхода ядовитых вулканических газов. Жрицы храма (пифии), надышавшись отравы, начинали пророчествовать, произнося непонятные слова. Специальные «переводчики» — жрецы храма толковали эти слова и отвечали на вопросы пришедших со своими проблемами паломников. Те спрашивали, отправляться ли в морское путешествие, вступать ли в брак, заключать ли договор с тем или иным деловым партнером, начинать ли войну, и т.д.

Технология экспертного оценивания состояла в следующем. Получив «заказ на экспертное прогнозирование», жрецы передавали его пифиям, выслушивали пророчества пифий, а затем толковали услышанное заказчику. С течением времени в храме накапливались пожертвования и памятные доски от тех, для кого прогнозы сбылись. Если же прогноз не осуществился, то сообщить об этом зачастую было некому, — заказчик лежал на морском дне или был убит в битве, разорен и продан в рабство, и т.п.

По традиции говорят, что Дельфийский храм находился в Греции. Но там нет вулканов. Видимо, он был в Италии — у Везувия или Этны, а сами описанные предсказания происходили в XII-XIV вв. Это вытекает из высшего достижения современной исторической науки — новой статистической хронологии.

В США в 1960-х годах методом Дельфи назвали экспертную процедуру прогнозирования научно-технического развития. В первом туре эксперты называли вероятные даты тех или иных будущих свершений. Во втором туре каждый эксперт знакомился с прогнозами всех остальных. Если его прогноз сильно отличался от прогнозов основной массы, его просили пояснить свою позицию, и часто он изменял свои оценки, приближаясь к средним значениям. Эти средние значения и выдавались заказчику как групповое мнение. Надо сказать, что реальные результаты исследования оказались довольно скромными — хотя дата высадки американцев на Луну была предсказана с точностью до месяца, все остальные прогнозы провалились — холодного термоядерного синтеза и средства от рака в ХХ в. человечество не дождалось.

Однако сама методика оказалась популярной — за последующие 15 лет она использовалась не менее 40 тыс. раз. Средняя стоимость экспертного исследования по методу Дельфи — 5 тыс. долларов США, но в ряде случаев приходилось расходовать и более крупные суммы — до 130 тыс. долларов.

Метод сценариев. Несколько в стороне от основного русла экспертных оценок лежит метод сценариев, применяемый прежде всего для экспертного прогнозирования. Рассмотрим основные идеи технологии сценарных экспертных прогнозов.

Социально-экономическое или, скажем, экологическое прогнозирование, как и любое прогнозирование вообще, может быть успешным лишь при некоторой стабильности условий. Однако решения органов власти, отдельных лиц, иные события меняют условия, и события развиваются по -иному, чем ранее предполагалось. Вполне очевидно, что после первого тура президентских выборов 1996 г. о дальнейшем развитии событий можно было говорить лишь в терминах сценариев: если во втором туре победит Б.Н. Ельцин, то будет то-то и то-то, если же победит Г.А. Зюганов, то события пойдут так-то и так-то.

Метод сценариев необходим не только в социально-экономической или экологической области. Например, при разработке методологического, программного и информационного обеспечения анализа риска химико-технологических проектов необходимо составить детальный каталог сценариев аварий, связанных с утечками токсических химических веществ. Каждый из таких сценариев описывает аварию своего типа, со своим индивидуальным происхождением, развитием, последствиями, возможностями предупреждения.

Таким образом, метод сценариев — это метод декомпозиции задачи прогнозирования, предусматривающий выделение набора отдельных вариантов развития событий (сценариев), в совокупности охватывающих все возможные варианты развития. При этом каждый отдельный сценарий должен допускать возможность достаточно точного прогнозирования, а общее число сценариев должно быть обозримо.

Возможность подобной декомпозиции не очевидна. При применении метода сценариев необходимо осуществить два этапа исследования:

  • построение исчерпывающего, но обозримого набора сценариев;
  • прогнозирование в рамках каждого конкретного сценария с целью получения ответов на интересующие исследователя вопросы.

Каждый из этих этапов лишь частично формализуем. Существенная часть рассуждений проводится на качественном уровне, как это принято в общественно-экономических и гуманитарных науках. Одна из причин заключается в том, что стремление к излишней формализации и математизации приводит к искусственному внесению определенности там, где ее нет по существу, либо к использованию громоздкого математического аппарата. Так, рассуждения на словесном уровне считаются доказательными в большинстве ситуаций, в то время как попытка уточнить смысл используемых слов с помощью, например, теории нечетких множеств, приводит к весьма громоздким математическим моделям.

Набор сценариев должен быть обозрим. Приходится исключать различные маловероятные события — прилет инопланетян, падение астероида, массовые эпидемии ранее неизвестных болезней, и т.д. Само по себе создание набора сценариев — предмет экспертного исследования. Кроме того, эксперты могут оценить вероятности реализации того или иного сценария.

Прогнозирование в рамках каждого конкретного сценария с целью получения ответов на интересующие исследователя вопросы также осуществляется в соответствии с описанной выше методологией прогнозирования. При стабильных условиях могут быть применены статистические методы прогнозирования временных рядов. Однако этому предшествует анализ с помощью экспертов, причем зачастую прогнозирование на словесном уровне является достаточным (для получения интересующих исследователя и ЛПР выводов) и не требующим количественного уточнения.

Как известно, при принятии решений на основе анализа ситуации (как говорят, при ситуационном анализе ), в том числе анализа результатов прогнозных исследований, можно исходить из различных критериев. Так, можно ориентироваться на то, что ситуация сложится наихудшим, или наилучшим, или средним (в каком-либо смысле) образом. Можно попытаться наметить мероприятия, обеспечивающие минимально допустимые полезные результаты при любом варианте развития ситуации, и т.д.

Мозговой штурм. Еще один вариант экспертного оценивания — мозговой штурм. Организуется он как собрание экспертов, на выступления которых наложено одно, но очень существенное ограничение — нельзя критиковать предложения других. Можно их развивать, можно высказывать свои идеи, но нельзя критиковать! В ходе заседания эксперты, «заражаясь» друг от друга, высказывают все более экстравагантные соображения. Часа через два записанное на магнитофон или видеокамеру заседание заканчивается, и начинается второй этап мозгового штурма — анализ высказанных идей. Обычно из 100 идей 30 заслуживают дальнейшей проработки, из них 5-6 дают возможность сформулировать прикладные проекты, а 2-3 оказываются в итоге приносящими полезный эффект — прибыль , повышение экологической безопасности, оздоровление окружающей природной среды и т.п.

При этом интерпретация идей — творческий процесс. Например, при обсуждении возможностей защиты кораблей от торпедной атаки была высказана идея: «Выстроить матросов вдоль борта и дуть на торпеду, чтобы изменить ее курс». После проработки эта идея привела к созданию специальных устройств, создающих волны, сбивающие торпеду с курса.

Источник: https://intuit.ru/studies/courses/4149/403/lecture/9285

ООО «ЭКСПЕРТНЫЕ РЕШЕНИЯ» Выписка ЕГРЮЛ с ЭЦП ФНС

О компании:
ООО «ЭКСПЕРТНЫЕ РЕШЕНИЯ» ИНН 7801600683, ОГРН 1137847161066 зарегистрировано 16.04.2013 в регионе Санкт-Петербург по адресу: 199106, г Санкт-Петербург, линия Косая, 24/25 ЛИТЕР А, ПОМ. 25-Н. Статус: Действующее. Размер Уставного Капитала 10 000,00 руб. читать далее.

Руководителем организации является: Генеральный Директор — Солдатов Алексей Витальевич, ИНН 780411765493. У организации 1 Учредитель. Основным направлением деятельности является «производство электромонтажных, санитарно-технических и прочих строительно-монтажных работ». На 01.01.2020 в ООО «ЭКСПЕРТНЫЕ РЕШЕНИЯ» числится 1 сотрудник.

— на обязательное пенсионное страхование, зачисляемые в Пенсионный фонд Российской Федерации: 0,00 руб. ↓ -0 млн. (0,00 руб. за 2018 г.)

В качестве Поставщика: , на сумму
В качестве Заказчика: , на сумму

Больше информации об организации — в Премиум доступе

Организация не предоставила данные.

ООО «ЭКСПЕРТНЫЕ РЕШЕНИЯ» ИНН 7801600683
(аффилированность ? )

Описание деятельности компании:

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ЭКСПЕРТНЫЕ РЕШЕНИЯ», краткое наименование: ООО «ЭКСПЕРТНЫЕ РЕШЕНИЯ». Действует с 16.04.2013, присвоены: ИНН 7801600683, КПП 780101001, ОГРН 1137847161066, ОКПО 53299393, основной ОКВЭД — «производство электромонтажных, санитарно-технических и прочих строительно-монтажных работ». Работает по 9 направлениям. Имеет 0 лицензий. Организация насчитывает 0 филиалов. Учреждённых компаний: 2, Представительств: 0, Управляемых: 0. Всего связанных с ООО «ЭКСПЕРТНЫЕ РЕШЕНИЯ» 2 компании. Состоит в реестре Малого среднего бизнеса как Микропредприятие. История компании представлена на странице Лента изменений. Отзывов по компании — нет. Финансовая отчетность ООО «ЭКСПЕРТНЫЕ РЕШЕНИЯ» — есть.

Как получить клиентов
с помощью портала ЗАЧЕСТНЫЙБИЗНЕС

Как правильно проверить контрагентов ?
Узнай на ЗАЧЕСТНЫЙБИЗНЕС!

Получите Базу Клиентов с КОНТАКТАМИ онлайн!
на ЗАЧЕСТНЫЙБИЗНЕС

Компании КОНКУРЕНТЫ. Всего найдено: 1 515
В регионе Санкт-Петербург с ОКВЭД 43.2
.
Разместить рекламу по всем компаниям

Внимание: Перед осуществлением безналичного платежа на расчетный счет любой организации (ООО, ЗАО, АО), рекомендуем проверять расчетные счета компании на блокировку ФНС. Совершая перевод на заблокированный счет, Вы рискуете не получить оплаченный товар/услугу и потерять денежные средства.

Проверка на блокировку расчетного счета организации доступна
в Премиум доступе

Высшим должностным лицам субъектов РФ:
— определить в границах соответствующего субъекта территории, на которых предусматривается реализация комплекса ограничительных и иных мероприятий, направленных на обеспечение санитарно-эпидемиологического благополучия населения, в том числе в условиях введения режима повышенной готовности, чрезвычайной ситуации;
— приостановить (ограничить) деятельность находящихся на соответствующей территории отдельных организаций независимо от организационно-правовой формы и формы собственности, а также индивидуальных предпринимателей;
— установить особый порядок передвижения на соответствующей территории лиц и транспортных средств, за исключением транспортных средств, осуществляющих межрегиональные перевозки.

Настоящий указ не распространяется на следующие организации (работодателей и их работников):
— непрерывно действующие организации;
— медицинские и аптечные организации;
— организации, обеспечивающие население продуктами питания и товарами первой необходимости;
— организации, выполняющие неотложные работы в условиях чрезвычайной ситуации и (или) при возникновении угрозы распространения заболевания, представляющего опасность для окружающих, в иных случаях, ставящих под угрозу жизнь, здоровье или нормальные жизненные условия населения;
— организации, осуществляющие неотложные ремонтные и погрузочно-разгрузочные работы;
— организации, предоставляющие финансовые услуги в части неотложных функций (в первую очередь услуги по расчетам и платежам);
— иные организации, определенные решениями высшего исполнительного органа государственной власти субъекта РФ.

Указ может распространяться на системообразующие, а также научные и образовательные организации по согласованию с Правительством РФ.

Федеральным государственным органам, органам управления государственными внебюджетными фондами, государственным органам субъектов РФ и органам местного самоуправления, организациям, осуществляющим производство и выпуск средств массовой информации, определить численность служащих и работников, обеспечивающих с 4 по 30 апреля 2020 г. включительно функционирование этих органов и организаций.

Настоящий указ вступает в силу со дня его официального опубликования.

Утвержден
постановлением Правительства
Российской Федерации
от 3 апреля 2020 г. N 434

ПЕРЕЧЕНЬ
ОТРАСЛЕЙ РОССИЙСКОЙ ЭКОНОМИКИ, В НАИБОЛЬШЕЙ СТЕПЕНИ ПОСТРАДАВШИХ В УСЛОВИЯХ УХУДШЕНИЯ СИТУАЦИИ В РЕЗУЛЬТАТЕ РАСПРОСТРАНЕНИЯ НОВОЙ КОРОНАВИРУСНОЙ ИНФЕКЦИИ

И З М Е Н Е Н И Я,
которые вносятся в постановление
Правительства Российской Федерации от 3 апреля 2020 г. № 434

Источник: https://zachestnyibiznes.ru/company/ul/1137847161066_7801600683_OOO-EKSPERTNYE-REShENIYa

Экспертные методы управленческих решений

Представление об экспертах

Любой руководитель испытывает рано или поздно необходимость в качественной консультации. Для этого нужны эксперты — специалисты в своем направлении.

Экспертные методы — это эффективные механизмы помощи менеджеру и сторудникам, которые нуждаются в ней.

В качестве экспертных методов управленческих решений можно рассматривать методы, которые основаны на проведении анализа и управления альтернатив различными способами, за сет рассмотрения экспертов и консультантов по интересующим вопросам. Экспертные методы чаще всего сопровождаются формированием научно — практических групп, представленных в форме экспертной комиссии.

Группы экспертов представлены, в большинстве случаев, авторитетными специалистами определенного, узкого профиля в задачу которых входит консультирование руководителя предприятия по интересующему вопросу. Какими бывают эти методы. Рассмотрим подробнее

Виды экспертных методов

  1. Метод применения круглого стола;
  2. Использование «Мозгового штурма»
  3. Разработка перспективных сценариев
  4. Средневзвешанный метод оценки
  5. Применение деловой игры
  6. Применение метода Дельфи

Методов достаточно много, поэтому сложно разобраться в них, не имея представления о каждом. Рассмотрим их подробнее, чтобы иметь представление какие методы доступны руководителю.

Краткое представление о методах

Метод применения круглого стола

Метод применения круглого стола — является одним из наиболее распространенных методов, поскольку не требует существенных усилий и дополнительных сверхзадач.

Сущность метода состоит в проведении небольшого рода встречи, на которую приглашаются представители различных групп и практических методов для проведения экспертной оценки проблемы, заявленной руководителем предприятия. Достаточно эффективен и прост в использовании

Использование «Мозгового штурма»

Использование «Мозгового штурма» — распространенный метод, который берет свою основу в иностранных предприятиях. Имеет схожий формат с предыдущим методом, но проводится силами руководителя и сотрудниками предприятия.

Сущность метода заключается в предложении большого числа альтернатив в сжатые промежутки времени, которые фиксируются и затем анализируются. Достаточно эффективен и используется в основном представителями рекламных отделов, практически не требует вложений и затрат со стороны руководителями

Разработка перспективных сценариев

Разработка перспективных сценариев — достаточно известный метод, схожий с предыдущими, иногда включает их в себя в качестве функциональной части. Более длительный чем мозговой штурм.

Сущность метода состоит в выявлении альтернатив либо использовании ранее разработанных концепции, их доработка в сценарии развития. Проходит с назначением ответственных лиц, постановкой задач, методов и оценкой результатов.

Средневзвешанный метод оценки

Средневзвешанный метод оценки — включает в себя формирование большого числа альтернатив и методов, а также оценок с их последующей концентрацией и выявление среднеучитывающего метода, эффективного по мнению руководителя. Метод достаточно сложен и чаще всего приводит к не эффективному результату.

Применение деловой игры

Деловая игра — достаточно интересный метод экспертной оценки, распространенный на предприятиях различного рода и вида.

Он интересен тем, что есть возможность моделирования различных ситуации, их проигрывание в режиме реального времени с последующий оценкой результатов.Метод показал себя как один из наиболее эффективных, доступных для реализации в рамках одного или группы предприятий.

Метод Дельфи

Метод Дельфи — сочетает в себе методы экспертного прогнозирования и выбор из большого числа альтернатив, доступен в процессе принятия решения группой. Обобщается и представляется в табличной форме, удобной для восприятия

Какой бы метод экспертной оценки не выбрал руководитель, любой из них будет эффективен, поскольку демонстрирует большое число альтернативных вариантов с различными сценариями.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Источник: https://spravochnick.ru/menedzhment/upravlencheskie_resheniya/ekspertnye_metody_upravlencheskih_resheniy/

Экспертные системы (ЭС)

В начале восьмидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название «экспертные системы» (ЭС). Цель исследований по ЭС состоит в разработке программ, которые при решении задач, трудных для эксперта–человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. Исследователи в области ЭС для названия своей дисциплины часто используют также термин «инженерия знаний», введенный Е.Фейгенбаумом как «привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов» .

Программные средства (ПС), базирующиеся на технологии экспертных систем, или инженерии знаний (в дальнейшем будем использовать их как синонимы), получили значительное распространение в мире. Важность экспертных систем состоит в следующем:

  • технология экспертных систем существенно расширяет круг практически значимых задач, решаемых на компьютерах, решение которых приносит значительный экономический эффект;
  • технология ЭС является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки сложных приложений; высокая стоимость сопровождения сложных систем, которая часто в несколько раз превосходит стоимость их разработки; низкий уровень повторной используемости программ и т.п.;
  • объединение технологии ЭС с технологией традиционного программирования добавляет новые качества к программным продуктам за счет: обеспечения динамичной модификации приложений пользователем, а не программистом; большей «прозрачности» приложения (например, знания хранятся на ограниченном ЕЯ, что не требует комментариев к знаниям, упрощает обучение и сопровождение); лучшей графики; интерфейса и взаимодействия.

По мнению ведущих специалистов , в недалекой перспективе ЭС найдут следующее применение:

  • ЭС будут играть ведущую роль во всех фазах проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг;
  • технология ЭС, получившая коммерческое распространение, обеспечит революционный прорыв в интеграции приложений из готовых интеллектуально-взаимодействующих модулей.

ЭС предназначены для так называемых неформализованных задач, т.е. ЭС не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение формализованных задач. Неформализованные задачи обычно обладают следующими особенностями:

  • ошибочностью, неоднозначностью, неполнотой и противоречивостью исходных данных;
  • ошибочностью, неоднозначностью, неполнотой и противоречивостью знаний о проблемной области и решаемой задаче;
  • большой размерностью пространства решения, т.е. перебор при поиске решения весьма велик;
  • динамически изменяющимися данными и знаниями.

Следует подчеркнуть, что неформализованные задачи представляют большой и очень важный класс задач. Многие специалисты считают, что эти задачи являются наиболее массовым классом задач, решаемых ЭВМ.

Экспертные системы и системы искусственного интеллекта отличаются от систем обработки данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод и эвристический поиск решения (а не исполнение известного алгоритма).

Экспертные системы применяются для решения только трудных практических (не игрушечных) задач. По качеству и эффективности решения экспертные системы не уступают решениям эксперта–человека. Решения экспертных систем обладают «прозрачностью», т.е. могут быть объяснены пользователю на качественном уровне. Это качество экспертных систем обеспечивается их способностью рассуждать о своих знаниях и умозаключениях. Экспертные системы способны пополнять свои знания в ходе взаимодействия с экспертом. Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление) в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, металлургия, горное дело, химия, образование, целлюлозно–бумажная промышленность, телекоммуникации и связь и др.

Коммерческие успехи к фирмам–разработчикам систем искусственного интеллекта (СИИ) пришли не сразу. На протяжении 1960 — 1985 гг. успехи ИИ касались в основном исследовательских разработок, которые демонстрировали пригодность СИИ для практического использования. Начиная примерно с 1985 г. (в массовом масштабе с 1988 — 1990 гг.), в первую очередь ЭС, а в последние годы системы, воспринимающие естественный язык (ЕЯ–системы), и нейронные сети (НС) стали активно использоваться в коммерческих приложениях.

Следует обратить внимание на то, что некоторые специалисты (как правило, специалисты в программировании, а не в ИИ) продолжают утверждать, что ЭС и СИИ не оправдали возлагавшихся на них ожиданий и умерли. Причины таких заблуждений состоят в том, что эти авторы рассматривали ЭС как альтернативу традиционному программированию, т.е. они исходили из того, что ЭС в одиночестве (в изоляции от других программных средств) полностью решают задачи, стоящие перед заказчиком. Надо отметить, что на заре появления ЭС специфика используемых в них языков, технологии разработки приложений и используемого оборудования (например, Lisp машины) давала основания предполагать, что интеграция ЭС с традиционными, программными системами является сложной и, возможно, невыполнимой задачей при ограничениях, накладываемых реальными приложениями. Однако в настоящее время коммерческие инструментальные средства (ИС) для создания ЭС разрабатываются в полном соответствии с современными технологическими тенденциями традиционного программирования, что снимает проблемы, возникающие при создании интегрированных приложений.

Причины, приведшие СИИ к коммерческому успеху, следующие.

Интегрированность. Разработаны инструментальные средства искусственного интеллекта (ИС ИИ), легко интегрирующиеся с другими информационными технологиями и средствами (с CASE, СУБД, контроллерами, концентраторами данных и т.п.).

Открытость и переносимость. ИС ИИ разрабатываются с соблюдением стандартов, обеспечивающих открытость и переносимость [14].

Использование языков традиционного программирования и рабочих станций. Переход от ИС ИИ, реализованных на языках ИИ (Lisp, Prolog и т.п.), к ИС ИИ, реализованным на языках традиционного программирования (С, C++ и т.п.), упростил обеспечение интегриро-ванности, снизил требования приложений ИИ к быстродействию ЭВМ и объемам оперативной памяти. Использование рабочих станций (вместо ПК) резко увеличило круг приложений, которые могут быть выполнены на ЭВМ с использованием ИС ИИ.

Архитектура клиент-сервер. Разработаны ИС ИИ, поддерживающие распределенные вычисления по архитектуре клиент-сервер, что позволило:снизить стоимость оборудования, используемого в приложениях, децентрализовать приложения, повысить надежность и общую производительность (так как сокращается количество информации, пересылаемой между ЭВМ, и каждый модуль приложения выполняется на адекватном ему оборудовании).

Проблемно/предметно-ориентированные ИС ИИ. Переход от разработок ИС ИИ общего назначения (хотя они не утратили свое значение как средство для создания ориентированных ИС) к проблемно/предметно-ориентированным ИС ИИ [9] обеспечивает: сокращение сроков разработки приложений; увеличение эффективности использования ИС; упрощение и ускорение работы эксперта; повторную используемость информационного и программного обеспечения (объекты,классы,правила,процедуры).

Типичная статическая ЭС состоит из следующих основных компонентов (рис. 1.):

  • решателя (интерпретатора);
  • рабочей памяти (РП), называемой также базой данных (БД);
  • базы знаний (БЗ);
  • компонентов приобретения знаний;
  • объяснительного компонента;
  • диалогового компонента.

База данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе.

База знаний (БЗ) в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.

Решатель , используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к исходным данным, приводят к решению задачи.

Компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, осуществляемый пользователем-экспертом.

Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.

Диалоговый компонент ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.

В разработке ЭС участвуют представители следующих специальностей:

  • эксперт в проблемной области, задачи которой будет решать ЭС;
  • инженер по знаниям — специалист по разработке ЭС (используемые им технологию, методы называют технологией (методами) инженерии знаний);
  • программист по разработке инструментальных средств (ИС), предназначенных для ускорения разработки ЭС.

Необходимо отметить, что отсутствие среди участников разработки инженеров по знаниям (т. е. их замена программистами) либо приводит к неудаче процесс создания ЭС, либо значительно удлиняет его.

Эксперт определяет знания (данные и правила), характеризующие проблемную область, обеспечивает полноту и правильность введенных в ЭС знаний.

Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы ЭС; осуществляет выбор того ИС, которое наиболее подходит для данной проблемной области, и определяет способ представления знаний в этом ИС; выделяет и программирует (традиционными средствами) стандартные функции (типичные для данной проблемной области), которые будут использоваться в правилах, вводимых экспертом.

Программист разрабатывает ИС (если ИС разрабатывается заново), содержащее в пределе все основные компоненты ЭС, и осуществляет его сопряжение с той средой, в которой оно будет использовано.

Экспертная система работает в двух режимах: режиме приобретения знаний и в режиме решения задачи (называемом также режимом консультации или режимом использования ЭС).

В режиме приобретения знаний общение с ЭС осуществляет (через посредничество инженера по знаниям) эксперт. В этом режиме эксперт, используя компонент приобретения знаний, наполняет систему знаниями, которые позволяют ЭС в режиме решения самостоятельно (без эксперта) решать задачи из проблемной области. Эксперт описывает проблемную область в виде совокупности данных и правил. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы манипулирования с данными, характерные для рассматриваемой области.

Отметим, что режиму приобретения знаний в традиционном подходе к разработке программ соответствуют этапы алгоритмизации, программирования и отладки, выполняемые программистом. Таким образом, в отличие от традиционного подхода в случае ЭС разработку программ осуществляет не программист, а эксперт (с помощью ЭС), не владеющий программированием.

В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ его получения. Необходимо отметить, что в зависимости от назначения ЭС пользователь может не быть специалистом в данной проблемной области (в этом случае он обращается к ЭС за результатом, не умея получить его сам), или быть специалистом (в этом случае пользователь может сам получить результат, но он обращается к ЭС с целью либо ускорить процесс получения результата, либо возложить на ЭС рутинную работу). В режиме консультации данные о задаче пользователя после обработки их диалоговым компонентом поступают в рабочую память. Решатель на основе входных данных из рабочей памяти, общих данных о проблемной области и правил из БЗ формирует решение задачи. ЭС при решении задачи не только исполняет предписанную последовательность операции, но и предварительно формирует ее. Если реакция системы не понятна пользователю, то он может потребовать объяснения: «Почему система задает тот или иной вопрос?», «как ответ, собираемый системой, получен?»

Структуру, приведенную на рис.&nbsp1, называют структурой статической ЭС. ЭС данного типа используются в тех приложениях, где можно не учитывать изменения окружающего мира, происходящие за время решения задачи. Первые ЭС, получившие практическое использование, были статическими.

На рис. 1.2 показано, что в архитектуру динамической ЭС по сравнению со статической ЭС вводятся два компонента: подсистема моделирования внешнего мира и подсистема связи с внешним окружением. Последняя осуществляет связи с внешним миром через систему датчиков и контроллеров. Кроме того, традиционные компоненты статической ЭС (база знаний и машина вывода) претерпевают существенные изменения, чтобы отразить временную логику происходящих в реальном мире событий.

Подчеркнем, что структура ЭС, представленная на рис. 1 и 2, отражает только компоненты (функции), и многое остается «за кадром».

Разработка ЭС имеет существенные отличия от разработки обычного программного продукта. Опыт создания ЭС показал, что использование при их разработке методологии, принятой в традиционном программировании, либо чрезмерно затягивает процесс создания ЭС, либо вообще приводит к отрицательному результату.

Использовать ЭС следует только тогда, когда разработка ЭС возможна, оправдана и методы инженерии знаний соответствуют решаемой задаче. Чтобы разработка ЭС была возможной для данного приложения, необходимо одновременное выполнение по крайней мере следующих требований:

  1. существуют эксперты в данной области, которые решают задачу значительно лучше, чем начинающие специалисты;
  2. эксперты сходятся в оценке предлагаемого решения, иначе нельзя будет оценить качество разработанной ЭС;
  3. эксперты способны вербализовать (выразить на естественном языке) и объяснить используемые ими методы, в противном случае трудно рассчитывать на то, что знания экспертов будут «извлечены» и вложены в ЭС;
  4. решение задачи требует только рассуждений, а не действий;
  5. задача не должна быть слишком трудной (т.е. ее решение должно занимать у эксперта несколько часов или дней, а не недель);
  6. задача хотя и не должна быть выражена в формальном виде, но все же должна относиться к достаточно «понятной» и структурированной области, т.е. должны быть выделены основные понятия, отношения и известные (хотя бы эксперту) способы получения решения задачи;
  7. решение задачи не должно в значительной степени использовать «здравый смысл» (т.е. широкий спектр общих сведений о мире и о способе его функционирования, которые знает и умеет использовать любой нормальный человек), так как подобные знания пока не удается (в достаточном количестве) вложить в системы искусственного интеллекта.

Использование ЭС в данном приложении может быть возможно, но не оправдано. Применение ЭС может быть оправдано одним из следующих факторов:

  • решение задачи принесет значительный эффект, например экономический;
  • использование человека-эксперта невозможно либо из-за недостаточного количества экспертов, либо из-за необходимости выполнять экспертизу одновременно в различных местах;
  • использование ЭС целесообразно в тех случаях, когда при передаче информации эксперту происходит недопустимая потеря времени или информации;
  • использование ЭС целесообразно при необходимости решать задачу в окружении, враждебном для человека.

Приложение соответствует методам ЭС, если решаемая задача обладает совокупностью следующих характеристик:

  1. задача может быть естественным образом решена посредством манипуляции с символами (т.е. с помощью символических рассуждений), а не манипуляций с числами, как принято в математических методах и в традиционном программировании;
  2. задача должна иметь эвристическую, а не алгоритмическую природу, т.е. ее решение должно требовать применения эвристических правил. Задачи, которые могут быть гарантированно решены (с соблюдением заданных ограничений) с помощью некоторых формальных процедур, не подходят для применения ЭС;
  3. задача должна быть достаточно сложна, чтобы оправдать затраты на разработку ЭС. Однако она не должна быть чрезмерно сложной (решение занимает у эксперта часы, а не недели), чтобы ЭС могла ее решать;
  4. задача должна быть достаточно узкой, чтобы решаться методами ЭС, и практически значимой.

При разработке ЭС, как правило, используется концепция «быстрого прототипа». Суть этой концепции состоит в том, что разработчики не пытаются сразу построить конечный продукт. На начальном этапе они создают прототип (прототипы) ЭС. Прототипы должны удовлетворять двум противоречивым требованиям: с одной стороны, они должны решать типичные задачи конкретного приложения, а с другой — время и трудоемкость их разработки должны быть весьма незначительны, чтобы можно было максимально запараллелить процесс накопления и отладки знаний (осуществляемый экспертом) с процессом выбора (разработки) программных средств (осуществляемым инженером по знаниям и программистом). Для удовлетворения указанным требованиям, как правило, при создании прототипа используются разнообразные средства, ускоряющие процесс проектирования.

Прототип должен продемонстрировать пригодность методов инженерии знаний для данного приложения. В случае успеха эксперт с помощью инженера по знаниям расширяет знания прототипа о проблемной области. При неудаче может потребоваться разработка нового прототипа или разработчики могут прийти к выводу о непригодности методов ЭС для данного приложения. По мере увеличения знаний прототип может достигнуть такого состояния, когда он успешно решает все задачи данного приложения. Преобразование прототипа ЭС в конечный продукт обычно приводит к перепрограммированию ЭС на языках низкого уровня, обеспечивающих как увеличение быстродействия ЭС, так и уменьшение требуемой памяти. Трудоемкость и время создания ЭС в значительной степени зависят от типа используемого инструментария.

В ходе работ по созданию ЭС сложилась определенная технология их разработки, включающая шесть следующих этапов (рис. 3): идентификацию, концептуализацию, формализацию, выполнение, тестирование, опытную эксплуатацию.

На этапе идентификации определяются задачи, которые подлежат решению, выявляются цели разработки, определяются эксперты и типы пользователей.

На этапе концептуализации проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач.

На этапе формализации выбираются ИС и определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы, оценивается адекватность целям системы зафиксированных понятий, методов решений, средств представления и манипулирования знаниями.

На этапе выполнения осуществляется наполнение экспертом базы знаний. В связи с тем, что основой ЭС являются знания, данный этап является наиболее важным и наиболее трудоемким этапом разработки ЭС. Процесс приобретения знаний разделяют на извлечение знаний из эксперта, организацию знаний, обеспечивающую эффективную работу системы, и представление знаний в виде, понятном ЭС. Процесс приобретения знаний осуществляется инженером по знаниям на основе анализа деятельности эксперта по решению реальных задач.

Система G2 предоставляет разработчику богатые возможности для формирования простого, ясного и выразительного графического интерфейса с пользователем с элементами мультипликации. Предлагаемый инструментарий позволяет наглядно отображать технологические процессы практически неограниченной сложности на разных уровнях абстракции и детализации. Кроме того, графическое отображение взаимосвязей между объектами приложения может напрямую использоваться в декларативных конструкциях языка описания знаний.

RTworks не обладает собственными средствами для отображения текущего состояния управляемого процесса. Разработчик приложения вынужден использовать систему Dataview фирмы VI Corporation, что в значительной степени ограничивает его возможности.

Интерфейс с пользователем TDC Expert ограничен возможностями системы TDC 3000, т.е. взаимодействие с конечным пользователем ограничивается текстовым режимом работы.

Первый и основной вопрос, который надо решить при представлении знаний, — это вопрос определения состава знаний, т.е. определение того, «ЧТО ПРЕДСТАВЛЯТЬ» в экспертной системе. Второй вопрос касается того, «КАК ПРЕДСТАВЛЯТЬ знания. Необходимо отметить, что эти две проблемы не являются независимыми. Действительно, выбранный способ представления может оказаться непригодным в принципе либо неэффективным для выражения некоторых знаний.

По нашему мнению, вопрос «КАК ПРЕДСТАВЛЯТЬ» можно разделить на две в значительной степени независимые задачи: как организовать (структурировать) знания и как представить знания в выбранном формализме.

Стремление выделить организацию знаний в самостоятельную задачу вызвано, в частности, тем, что эта задача возникает для любого языка представления и способы решения этой задачи являются одинаковыми (либо сходными) вне зависимости от используемого формализма.

Итак, в круг вопросов, решаемых при представлении знаний, будем включать следующие:

  • определение состава представляемых знаний;
  • организацию знаний;
  • представление знаний, т.е. определение модели представления.

Состав знаний ЭС определяется следующими факторами:

  • проблемной средой;
  • архитектурой экспертной системы;
  • потребностями и целями пользователей;
  • языком общения.

В соответствии с общей схемой статической экспертной системы (см. рис. 1) для ее функционирования требуются следующие знания:

  • знания о процессе решения задачи (т.е. управляющие знания), используемые интерпретатором (решателем);
  • знания о языке общения и способах организации диалога, используемые лингвистическим процессором (диалоговым компонентом);
  • знания о способах представления и модификации знаний, используемые компонентом приобретения знаний;
  • поддерживающие структурные и управляющие знания, используемые объяснительным компонентом.
  • знания о методах взаимодействия с внешним окружением;
  • знания о модели внешнего мира.

Зависимость состава знаний от требований пользователя проявляется в следующем:

  • какие задачи (из общего набора задач) и с какими данными хочет решать пользователь;
  • каковы предпочтительные способы и методы решения;
  • при каких ограничениях на количество результатов и способы их получения должна быть решена задача;
  • каковы требования к языку общения и организации диалога;
  • какова степень общности (конкретности) знаний о проблемной области, доступная пользователю;
  • каковы цели пользователей.

Состав знаний о языке общения зависит как от языка общения, так и от требуемого уровня понимания.

Предметные знания содержат данные о предметной области и способах преобразования этих данных при решении поставленных задач. Отметим, что по отношению к предметным знаниям знания о представлении и знания об управлении являются метазнаниями («знания о знаниях»). В предметных знаниях можно выделить описатели и собственно предметные знания. Описатели содержат определенную информацию о предметных знаниях, такую, как коэффициент определенности правил и данных, меры важности и сложности. Собственно предметные знания разбиваются на факты и исполняемые утверждения. Факты определяют возможные значения сущностей и характеристик предметной области. Исполняемые утверждения содержат информацию о том, как можно изменять описание предметной области в ходе решения задач. Говоря другими словами, исполняемые утверждения — это знания, задающие процедуры обработки. Однако мы избегаем использовать термин «процедурные знания», так как хотим подчеркнуть, что эти знания могут быть заданы не только в процедурной, но и в декларативной форме.

Управляющие знания можно разделить на фокусирующие и решающие. Фокусирующие знания описывают, какие знания следует использовать в той или иной ситуации. Обычно фокусирующие знания содержат сведения о наиболее перспективных объектах или правилах, которые целесообразно использовать при проверке соответствующих гипотез. В первом случае внимание фокусируется на элементах рабочей памяти, во втором — на правилах базы знаний. Решающие знания содержат информацию, используемую для выбора способа интерпретации знаний, подходящего к текущей ситуации. Эти знания применяются для выбора стратегий или эвристик, наиболее эффективных для решения данной задачи.

Качественные и количественные показатели экспертной системы могут быть значительно улучшены за счет использования метазнаний , т.е. знаний о знаниях. Метазнания не представляют некоторую единую сущность, они могут применяться для достижения различных целей. Перечислим возможные назначения метазнаний:

  1. метазнания в виде стратегических метаправил используются для выбора релевантных правил ;
  2. метазнания используются для обоснования целесообразности применения правил из области экспертизы;
  3. метаправила используются для обнаружения синтаксических и семантических ошибок в предметных правилах;
  4. метаправила позволяют системе адаптироваться к окружению путем перестройки предметных правил и функций;
  5. метаправила позволяют явно указать возможности и ограничения системы, т.е. определить, что система знает, а что не знает.

Вопросы организации знаний необходимо рассматривать в любом представлении, и их решение в значительной степени не зависит от выбранного способа (модели) представления. Выделим следующие аспекты проблемы организации знаний:

  • организация знаний по уровням представления и по уровням детальности;
  • организация знаний в рабочей памяти;
  • организация знаний в базе знаний.

Для того чтобы экспертная система могла управлять процессом поиска решения, была способна приобретать новые знания и объяснять свои действия, она должна уметь не только использовать свои знания, но и обладать способностью понимать и исследовать их, т.е. экспертная система должна иметь знания о том, как представлены ее знания о проблемной среде. Если знания о проблемной среде назвать знаниями нулевого уровня представления, то первый уровень представления содержит метазнания, т.е. знания о том, как представлены во внутреннем мире системы знания нулевого уровня. Первый уровень содержит знания о том, какие средства используются для представления знаний нулевого уровня. Знания первого уровня играют существенную роль при управлении процессом решения, при приобретении и объяснении действий системы. В связи с тем, что знания первого уровня не содержат ссылок на знания нулевого уровня, знания первого уровня независимы от проблемной среды.

Число уровней представления может быть больше двух. Второй уровень представления содержит сведения о знаниях первого уровня, т.е. знания о представлении базовых понятий первого уровня. Разделение знаний по уровням представления обеспечивает расширение области применимости системы.

Выделение уровней детальности позволяет рассматривать знания с различной степенью подробности. Количество уровней детальности во многом определяется спецификой решаемых задач, объемом знаний и способом их представления. Как правило, выделяется не менее трех уровней детальности, отражающих соответственно общую, логическую и физическую организацию знаний. Введение нескольких уровней детальности обеспечивает дополнительную степень гибкости системы, так как позволяет производить изменения на одном уровне, не затрагивая другие. Изменения на одном уровне детальности могут приводить к дополнительным изменениям на этом же уровне , что оказывается необходимым для обеспечения согласованности структур данных и программ. Однако наличие различных уровней препятствует распространению изменений с одного уровня на другие.

Рабочая память (РП) экспертных систем предназначена для хранения данных. Данные в рабочей памяти могут быть однородны или разделяются на уровни по типам данных. В последнем случае на каждом уровне рабочей памяти хранятся данные соответствующего типа. Выделение уровней усложняет структуру экспертной системы, но делает систему более эффективной. Например, можно выделить уровень планов, уровень агенды (упорядоченного списка правил, готовых к выполнению) и уровень данных предметной области (уровень решений).

В современных экспертных системах данные в рабочей памяти рассматриваются как изолированные или как связанные. В первом случае рабочая память состоит из множества простых элементов , а во втором mdash; из одного или нескольких (при нескольких уровнях в РП) сложных элементов (например, объектов). При этом сложный элемент соответствует множеству простых, объединенных в единую сущность. Теоретически оба подхода обеспечивают полноту, но использование изолированных элементов в сложных предметных областях приводит к потере эффективности.

Данные в РП в простейшем случае являются константами и (или) переменными. При этом переменные могут трактоваться как характеристики некоторого объекта, а константы — как значения соответствующих характеристик. Если в РП требуется анализировать одновременно несколько различных объектов, описывающих текущую проблемную ситуацию, то необходимо указывать, к каким объектам относятся рассматриваемые характеристики. Одним из способов решения этой задачи является явное указание того, к какому объекту относится характеристика.

Если РП состоит из сложных элементов, то связь между отдельными объектами указывается явно, например заданием семантических отношений. При этом каждый объект может иметь свою внутреннюю структуру. Необходимо отметить, что для ускорения поиска и сопоставления данные в РП могут быть связаны не только логически, но и ассоциативно.

Показателем интеллектуальности системы с точки зрения представления знаний считается способность системы использовать в нужный момент необходимые (релевантные) знания. Системы, не имеющие средств для определения релевантных знаний, неизбежно сталкиваются с проблемой «комбинаторного взрыва». Можно утверждать, что эта проблема является одной из основных причин, ограничивающих сферу применения экспертных систем. В проблеме доступа к знаниям можно выделить три аспекта: связность знаний и данных, механизм доступа к знаниям и способ сопоставления.

Основной проблемой при работе с большой базой знаний является проблема поиска знаний, релевантных решаемой задаче. В связи с тем, что в обрабатываемых данных может не содержаться явных указаний на значения, требуемые для их обработки, необходим более общий механизм доступа, чем метод прямого доступа (метод явных ссылок). Задача этого механизма состоит в том, чтобы по некоторому описанию сущности, имеющемуся в рабочей памяти, найти в базе знаний объекты, удовлетворяющие этому описанию. Очевидно, что упорядочение и структурирование знаний могут значительно ускорить процесс поиска.

Нахождение желаемых объектов в общем случае уместно рассматривать как двухэтапный процесс. На первом этапе, соответствующем процессу выбора по ассоциативным связкам, совершается предварительный выбор в базе знаний потенциальных кандидатов на роль желаемых объектов. На втором этапе путем выполнения операции сопоставления потенциальных кандидатов с описаниями кандидатов осуществляется окончательный выбор искомых объектов. При организации подобного механизма доступа возникают определенные трудности: Как выбрать критерий пригодности кандидата? Как организовать работу в конфликтных ситуациях? и т.п.

Операция сопоставления может использоваться не только как средство выбора нужного объекта из множества кандидатов; она может быть использована для классификации, подтверждения, декомпозиции и коррекции. Для идентификации неизвестного объекта он может быть сопоставлен с некоторыми известными образцами. Это позволит классифицировать неизвестный объект как такой известный образец, при сопоставлении с которым были получены лучшие результаты. При поиске сопоставление используется для подтверждения некоторых кандидатов из множества возможных. Если осуществлять сопоставление некоторого известного объекта с неизвестным описанием, то в случае успешного сопоставления будет осуществлена частичная декомпозиция описания.

Методы решения задач, основанные на сведении их к поиску, зависят от особенностей предметной области, в которой решается задача, и от требований, предъявляемых пользователем к решению. Особенности предметной области с точки зрения методов решения можно характеризовать следующими параметрами:

  • размер, определяющий объем пространства, в котором предстоит искать решение;
  • изменяемость области, характеризует степень изменяемости области во времени и пространстве (здесь будем выделять статические и динамические области);
  • полнота модели, описывающей область, характеризует адекватность модели, используемой для описания данной области. Обычно если модель не полна, то для описания области используют несколько моделей, дополняющих друг друга за счет отражения различных свойств предметной области;
  • определенность данных о решаемой задаче, характеризует степень точности (ошибочности) и полноты (неполноты) данных. Точность (ошибочность) является показателем того, что предметная область с точки зрения решаемых задач описана точными или неточными данными; под полнотой (неполнотой) данных понимается достаточность (недостаточность) входных данных для однозначного решения задачи.

Требования пользователя к результату задачи, решаемой с помощью поиска, можно характеризовать количеством решений и свойствами результата и (или) способом его получения. Параметр «количество решений» может принимать следующие основные значения: одно решение, несколько решений, все решения. Параметр «свойства» задает ограничения, которым должен удовлетворять полученный результат или способ его получения. Так, например, для системы, выдающей рекомендации по лечению больных, пользователь может указать требование не использовать некоторое лекарство (в связи с его отсутствием или в связи с тем, что оно противопоказано данному пациенту). Параметр «свойства» может определять и такие особенности, как время решения («не более чем», «диапазон времени» и т.п.), объем памяти, используемой для получения результата, указание об обязательности (невозможности) использования каких–либо знаний (данных) и т.п.

Итак, сложность задачи, определяемая вышеприведенным набором параметров, варьируется от простых задач малой размерности с неизменяемыми определенными данными и отсутствием ограничений на результат и способ его получения до сложных задач большой размерности с изменяемыми, ошибочными и неполными данными и произвольными ограничениями на результат и способ его получения. Из общих соображений ясно, что каким–либо одним методом нельзя решить все задачи. Обычно одни методы превосходят другие только по некоторым из перечисленных параметров.

Рассмотренные ниже методы могут работать в статических и динамических проблемных средах. Для того чтобы они работали в условиях динамики, необходимо учитывать время жизни значений переменных, источник данных для переменных, а также обеспечивать возможность хранения истории значений переменных, моделирования внешнего окружения и оперирования временными категориями в правилах.

Существующие методы решения задач, используемые в экспертных системах, можно классифицировать следующим образом:

  • методы поиска в одном пространстве — методы, предназначенные для использования в следующих условиях: области небольшой размерности, полнота модели, точные и полные данные;
  • методы поиска в иерархических пространствах — методы, предназначенные для работы в областях большой размерности;
  • методы поиска при неточных и неполных данных;
  • методы поиска, использующие несколько моделей, предназначенные для работы с областями, для адекватного описания которых одной модели недостаточно.

Предполагается, что перечисленные методы при необходимости должны объединяться для того, чтобы позволить решать задачи сложность которых возрастает одновременно по нескольким параметрам.

Рассмотрим особенности инструментальных средств для создания статических ЭС на примере комплекса ЭКО, разработанного в РосНИИ ИТ и АП. Наиболее успешно комплекс применяется для создания ЭС, решающих задачи диагностики (технической и медицинской), эвристического оценивания (риска, надежности и т.д.), качественного прогнозирования, а также обучения.

Комплекс ЭКО используется: для создания коммерческих и промышленных экспертных систем на персональных ЭВМ, а также для быстрого создания прототипов экспертных систем с целью определения применимости методов инженерии знаний в некоторой конкретной проблемной области.

На основе комплекса ЭКО было разработано более 100 прикладных экспертных систем. Среди них отметим следующие:

  • поиск одиночных неисправностей в персональном компьютере;
  • оценка состояния гидротехнического сооружения;
  • подготовка деловых писем при ведении переписки с зарубежными партнерами;
  • проведение скрининговой оценки иммунологического статуса;
  • оценка показаний микробиологического обследования пациента, страдающего неспецифическими хроническими заболеваниями легких.

Комплекс ЭКО включает три компонента.

Ядром комплекса является интегрированная оболочка экспертных систем ЭКО, которая обеспечивает быстрое создание эффективных приложений для решения задач анализа в статических проблемных средах типа 1 и 2.

При разработке средств представления знаний оболочки преследовались две основные цели: эффективное решение достаточно широкого и практически значимого класса задач средствами персональных компьютеров; гибкие возможности по описанию пользовательского интерфейса и проведению консультации в конкретных приложениях. При представлении знаний в оболочке используются специализированные (частные) утверждения типа «атрибут–значение» и частные правила, что позволяет исключить ресурсоемкую операцию сопоставления по образцу и добиться эффективности разрабатываемых приложений. Выразительные возможности оболочки удалось существенно расширить за счет интегрированности, обеспечиваемой путем вызова внешних программ через сценарий консультации и стыковки с базами данных (ПИРС и dBase IV) и внешними программами. В оболочке ЭКО обеспечивается слабая структуризация БЗ за счет ее разделения на отдельные компоненты для решения отдельных подзадач в проблемной среде модели (понятию «модель» ЭКО соответствует понятие «модуль» базы знаний системы G2).

С точки зрения технологии разработки ЭС оболочка поддерживает подходы, основанные на поверхностных знаниях и структурировании процесса решения.

Оболочка функционирует в двух режимах: в режиме приобретения знаний и в режиме консультации (решения задач). В первом режиме разработчик ЭС средствами диалогового редактора вводит в БЗ описание конкретного приложения в терминах языка представления знаний оболочки. Это описание компилируется в сеть вывода с прямыми адресными ссылками на конкретные утверждения и правила. Во втором режиме оболочка решает конкретные задачи пользователя в диалоговом или пакетном режиме. При этом решения выводятся от целей к данным (обратное рассуждение).

Для расширения возможностей оболочки по работе с глубинными знаниями комплекс ЭКО может быть дополнен компонентом К–ЭКО (конкретизатором знаний), который позволяет описывать закономерности в проблемных средах в терминах общих (абстрактных) объектов и правил. К–ЭКО используется на этапе приобретения знаний вместо диалогового редактора оболочки для преобразования общих описаний в конкретные сети вывода, допускающие эффективный вывод решений средствами оболочки ЭКО. Таким образом, использование конкретизатора обеспечивает возможность работы с проблемными средами типа 2.

Третий компонент комплекса — система ИЛИС, позволяющая создавать ЭС в статических проблемных средах за счет индуктивного обобщения данных (примеров) и предназначенная для использования в тех приложениях, где отсутствие правил, отражающих закономерности в проблемной среде, возмещается обширным экспериментальным материалом. Система ИЛИС обеспечивает автоматическое формирование простейших конкретных правил и автономное решение задач на их основе; при этом используется жесткая схема диалога с пользователем. Поскольку при создании реальных приложений эксперты представляют, как правило, и знания о закономерностях в проблемной среде, и экспериментальный материал (для решения частных подзадач), возникает необходимость в использовании правил, сформированных системой ИЛИС, в рамках более сложных средств представления знаний. Комплекс ЭКО обеспечивает автоматический перевод таких правил в формат оболочки ЭКО. В результате удается получить полное (адекватное) представление реальной проблемной среды, кроме того, задать гибкое описание организации взаимодействия ЭС с конечным пользователем.

Источник: http://masters.donntu.org/2005/kita/kapustina/library/exp_sys.htm


Похожие записи:

Добавить комментарий